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A GAME OF OPTIMAL PURSUIT OF ONE NON-INERTIAL OBJECT BY
TWO INERTIAL OBJECTS’

A.YU. LEVCHENKOV and A.G. PASHKOV

A game in which one controlled object is pursued by two others is studied.
The pursuing objects are inertial, and the pursued object is not. The
duration of the game is fixed. The payoff functional is the distance
between the pursued cbject and the closest pursuer at the instant when
the game ends. An algorithm for determining the pavoff function for all
possible positions is constructed. It is shown that the game space
consists of several domains in which the payoff is expressed analytically,
or is determined by solving a certain non-linear equation. Strategies of
the pursuers which guarantees them a result as close to the game payoff
as desired are indicated.

The optimal solution of a game of pursuit when one inertial object
pursues a non-inertial one was cbtained earlier in /1/. The present
paper is related to the investigations reported in /1-10/.

1. Let the moticns of the pursuers P, (z')(i=1,2) and of the pursued object E (z) be
described by the eguations

=1, zi=ut, ntead zii=ul ni=u. = {1.1)
The control vectors of the pursuers and the pursued satisfy the constraints
(') + P Ku >0, @F + 0t < (1.2)
The game is studied over the time interval |4, 9). The paycff functicnal is the distance
between the pursued object and the nearest pursuer at the instant { =& that the game ends,
e ¥ = min; [(21 (8) — 23° (8)7 = (22 (8) — 22’ ()] (1.3)

As a result of the change of variablesy =z + (& -1, {(f=1.2),which means passing
to considering the centres of regions of attainability of the inertial cbjects, relations
(1.1)—=1(1.3) take the form

¥ =0 —ui yi (t0) =1z (t) + (8 — to) 2}, (t0) (1.9
= min; [{z1(8) — g1 ()] = (22 (8) — y' (9] (1.5)

At the instant ¢ =% the values of y found from (1.3) and (1.5) are identically equal.

We denote the centres of the attainability regions by P,. For the positions where P,° = P,
the payoff of the two-to-one game, denoted by p?, is identical with the payoff of the one-
to-one game denoted by p'’. Henceforth we consider those initial positions for which P = P,
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Let us introduce a mobile coordinate system linked to the current position of the pursuers.
We direct the ¢, axis from the current position of the first pursuer to the current position
of the second (the numbering of the pursuers is fixed and arbitrary). The g, axis runs through
the middle of the segment [P P,], at right angles, so as to obtain a right-oriented system of
coordinates., In this system, the position of the cbject F will be defined by the coordinates
{z.y}, and that of the pursuers P; by the coordinates {(—1)i*1z, 0}). Because the position of
the pursuers is symmetric in this system, the vector ¢(z,y,2) fully describes the mutual
location of the pursuers and the pursued.

In special cases, simultaneously with the above mobile coordinate system (g,.¢,) we shall
consider an immobile Cartesian system (1,.7,), the axes of both systems coinciding at a certain
instant of time. The system (1, %,) is convenient for carrving out geometrical constructions
and for considering optimal motions.

The dynamics of the phase vector { is described by the following system of differential
equations:

. —t j (6 —1 .
= — @ 7 ) [us? + us?) + AL mdlh (02: ) [us? — ust] (1.6)
. — . —t
yo=v =B gt - 28 ey
8 —1 2
o= Z)Wf—uﬂ
The constraints on the control of the players have the form (1.2). The paycff functional

is determined from the formula

y=1E0) = @) + gt O (1.7

In (1.6), the vector v = {v,, v,} has, in relation to the system (1. W), the meaning of
the absolute velocity of the point E, and the vectors u' =:{uf,u;} are proportional, with a
factor (8 — 1), to the velocities of the points P,. Thus the first twc formulae in (1.6) produce
expressions for the relative velocity of the point E in the mobile system 19,. q;), and the
component 2z describes the relative velocity of the pursuer.

We shall carry cut some geometrical constructions in the coordinate system (M, 7)) . A
circle of radius r(fy) = p (& — )2/ 2 with its centre at the point {(—1)™3z(¢,), 0} will be the
attainability region G' {t,. 8} of object P; from the specified initial position at the instant
t =1, to the instant ¢ =19%. The attainability domain G, ({,, %) of cbject E from the specified
initial location position at the instant t =1, to the instant t=¢ will be a circle of radius
R (t) = v (# — ty) with its centre at the pcint {z, y}. We shall denote the boundaries of the
domains G' (t,. 8) and G, (t,. %) by 8(G) and & (G,) respectively. We shall mean by the position
of a game the vector {t{, & (f)} of the extended phase space.

Suppose that we are given {f, & (f,)} as the initial position of the game. The fcllowing
mutual locations cf the objects P, and E, the attainability region G, (t,. 9), and the 4, axis
are possikle:

1) 8(G) N me={Z} or 8(G) M, = {4), where A& is & unique pocint;

2) 8(G,) Y m, = {4,. 4,} with A4, 4, and E &£ P, A P4,

3) (G Ny ={4,. 4,} with A, % 4, and E & int P14, P4,

I

The first two cases are described by the following irnegquality centaining the vector £ and time
jz! t—jz] 5
VO T ez e

The situaticn corresponding to case ; is described by the oppesite inequality and is

shown in Fig.l.

T
" DAY
Tp —
—r,

2
N DNy

Y o
ri

Fig.2
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2. 1Inequality (1.8) separates out in phase space a certain three-dimensional domain
(denoted by D), in which the one-to-one game, that is p3! = p!* takes place. Obviously in D
the problem reduces to a game of pursuit between E and the nearest pursuer.

Let us divide the domain D! into subdomains DR and@ DN!. We consider the quadratic
equation

(t_t,)s_z(t—z,)(ﬂ_:.,_%)+%=o (2.1)
e=((lz]— 2"+ yh"
The boundary I'jof DR!" and DN satisfies the relations
v\ 2e
d=(0—ti— =) — X0 n=t>0 ©.2)
(d is the discriminant, and ¢, ¢, are the roots of Eq.(2.1)).

one of the following two conditions is satisfied in domain DRM : either d <0, or
éa>0 and # <t <t, In domain DN?*! the real roots of Eq.(2.1) satisfy the inequality
t <t < t,.

We denote by y," the programmed maximin in the one-to-one game. It follows froem /1/
that in the domain DR the payoff of a game satisfies the relation p! = 9,1, and in the domain
DN = DN | T, the equation p'' = v*/(2p). Obviously, for t,>®% — v/ p the set DN is
empty.

11

3. Consider case 3) shown in Fig.l (in (1.8) there is an opposite inequality). This
case is comparable with the three-dimensional domain D? separated from D! by the surface
I, defined by the relation E & 4 (P,4,P,4,), where § (P,4,P,A,) is the boundary of the
tetragon P;A,Ppd,. The surface T, consists of three parts: I'R; (this separates DRY and
D*),I'N; (this separates DN!! and D?), and the line L on which the relations (2.2) are
satisfied together with the condition FE & @ (P4, P,4,).

Let us divide the domain D2 into the open subdomains DR? and DN?. For this, we
consider the quadratic equation

(z—z.,)z—z(t—z,)(ﬁ_z.,_ ;’:‘i’;a )+ psziibn =0 (3.1)
sin g == (v} (& — £o)' — 2% (t))"/y/(v (8 — 1))

Y{t)+z () tgag
(W (t0) + = (t0) tg @a)? + 2% (1))

The surface I', will be a boundary of subdomains DR? and DN?!'. The points of I, satisfy
the relations

sin 50 =

[ g vSiDT Y 2y _ _
d _(6 i) — Tep =0 h=030 (3.2)

(d* is the discriminant, and ¢, ¢, are the roots of Eg.(3.1)).

Let us clarify the meaning of Eg,(3.1). Let points A;and 4; in the fixed system (n;.M,)
have the cocrdinates (0,a,) and (0, a,) respectively, and point A the coordinates (0, max; {| a; !}
sign ¥ (t,)) (i.e., A is the point of the set ({4,, 4,} furthest removed from the pursuers).
Next, let the players P; and E take extremal aim at the point A. We shall describe the
corresponding motion as an extremal programmed motion., Then the number ¢ =1 will be the
root of Eg.(3.1) if on the extremal programmed motion we have y (t,)= 0. Thus, the presence
of the root t = {, reflects the fact that the projections of points P; and E coincide on the
17, axis at the instant ¢ = {,.

The domain DR? is a subdomain D% in which one of the following conditions is satisfied:
d* <03 or d* >0, but neither of the roots ¢, and t, exceeds [, The domain DN is a sub-
domain D% jin which the condition d* >0, and f, >ty t, > 1, hold., The cases described cover
all possible relations of the roots 1{,,!, of Eq.(3.1), and {, since the situation 1, <f, <1,
is impossible because of the definition of point A. Therefore we have DR% {J I | DN® = DY,

The points of the surface I', have the following property. By virtue of Eq.(3,2), the
roots of Eq,(3.1) are identical; at the same time, at the instant ¢t =t, = f, not only the
projections but also the velocities of projections of points P; and E on the 7, axis are equal.

The division of the phase space is shown schematically in Fig.2.

4. Let {to, & (1)) = DR* (T, = DR®. We shall consider the function of programmedmaximin.
Vo = max {7, ¥} (4.1)
Ve =((t) F o —p (@112, k=12
a;, s =y (to) & ((v (& — 1))* — 2* (to))”

It can be shown that ¢, is u-stable /2/ in the domain BDR¥. The property of v-
stability of the function y,* follows from the definition of this function. Thus, a function
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with (u,v) stability has been constructed in the domain DAL

Proof of the u-stability of ¢ in the domain DR we introduce additional constraints
on the control of the players P;. We set

e —ud=y, ple=yli=y (4.2
System (1.6) takes the form
r=u, == (= u, = — (0 —t oy (4.3

let us show that when the constraints (4.2) are imposed on the control of the pursuers,
the function ¥,® will be u-stable in DA™. Hence follows the u-stability of this functicn
alsc when there are no constraints.

1°, Let {te £t} & DR™ with y(t) > 0. This means that E &[P,P,]. In this case under con-
sideration we have y,"=1y,> 7y, We shall prove that under these conditions the function y,%
satisfies the Bellman equation

e ) 0 X F IR . AP . .
b+ o min, [ (S (L) 4 (B5) ] =0 (3.4
We introduce the notation
TEE -0 — ) o= Ry= 30+ e
Then v, =R, —p(§~1)?/2 Onsubstituting this expression into (4.4), we obtain
. dy, 2 : (8 —thuys 18— 1) uaay
maxvmmu{ 4t }:mn (-— A 7, >+
o @2ty @by ant (6 — 1)
max, (— g +F TR ) -

It can be verified that the minimum with respect to u on the right side of this expression
eguals w=p{f— 1), and the maximur with respect to v is —aep? (8 — ;' (Ry). Thus the basic eguation
is satisfied,.

29, Now let {t, i) e DR® with y(tp) = 0. Hence, for t=1¢, the equality 2=y, =1
hclds, and the functien 4% is nct differentiable. We use Theorem (3.2.1) from /3/ to vertify
the u-stability cf trhe functiocn 1,2. Thus, we must prove the inequality

max, min, max {dy, . df, dy,/ 41} O 14,80
Let us intrcduce the fcllewing notaticn:
' Py — 2 R= (@
Then v =R —p(@~1% 2 ay=r, o= —r and inequality (4.%) takes the Zorm
-1
R~ wax min, {— (¢~ 1y s sy — (f = thwg |} - p (O == < [} (4.6}

We note thet the validity ¢f the ineguzlities ~2 p(8— R R p{®—1? feliows from the
conditicn {1 Y, s LR
Censider the functicn

G(r,oz, Uy vy = = ( — thups — 2y (8 — 1 Uy
To estimate the functicn ¢.we consicder its conteour lines g = ¢= const in (5, s) axes
where s = {(8—1. = u. (8 ~1). We denote by & the straight line wu(d—8=1; in the (s.s) plane.
Let e lp(® —¢trR1 4] Under this assurmpticn a minimum is attained at the point A (Fig.3al.

) /i/ (
>3 =3
1 7 5o

Fig.3
Then we have
ming ¢ (x, 3, &, v} = rry — zp =~ Rp (§ — 1),
Finally, we obtain
MEX, WD, § = maXy (Fry 2ty — AR {§ — 1)) = vI{§ — &) — Rp(d ~ 1)

Clearly, expression (4.€) holds (eguality occurs). .

Now, let O v, p(H~t)rR™L. Then the minimum of the function ¢ with respect to u is
attained for u,=1,/(®~1) (Fig.3b:. Therefore,
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max, midy (— (0 — 1) vt — 2y o 7 | 1y — (8 — 1) ty |) = mAX, (— 5 (4 (B — 1) — 32"t — 20))

To be specific, let us assume that =z>0. Then, obviously, v,-—(vt-—v,’)"" Consider the
function f(n) = z (v — p)"h — 32 (u3 (& — BT — )y,

By computing the derivative f,° we can show that, under the condition R p(8#-—1P* the
function f(x) increases monotonically in the section 0 1y < (¢ — ) rR), Therefore, the maximum
of (v is attained at the end point of the section when i, = p (8- #)rR™, and ineguality (4.6)
becomes a strict eguality.

Thus, inequality (4.5) is proved.

The case of vy <0 can be examined similarly.

Note that the proof of the u-stability of the function y,» for the case in Sect.2° could
have been constructed in the same way as the proof given in /10/.

5. Consider the set DN%, For t>»>% —+v/pu we have DN¥ = {(#}. Therefore, for the
points of set DN* the inequality #<<® — v /p. It can be shown that

minp¥ (1 ) =(2). {t. §E DA™ (5.1)
i1,

Clearly, p* =+?/(2p) corresponds, for example, to those positions of ({t, § (1)} & DAY where
absorption occurs (S, is the two-dimensional sphere of unit radius, k= v¢/(2u))

{6 (t, ) @ kS, D {6, (1, 0)}
The relations
31,-5 pr =t/ (2p), {t, Ele TN, UL, (j‘nt;)?.zl =+v/(2u), {t, E}eT,
hold for any (<94 —+v./p.

Since DAY= {z} when t= §—~/pu. the trajectory of the system should, starting from
any initial position f{t, f (t))} & DN® when t, <@—v,p, cross either T, or I, not later than
the instant t=6&—~/p. Therefore, Eq.(5.1) holds.

Let us divide the set DN into two: DN,*, where p¥>+%/(2u), and DN.%, where
p*==+?/(2u). We will denote the boundary of domains DN, and DN,* by T;. An algorithm for
constructing these domains is given in Sect.ll.

6. Let {t, t(t,)}= DN,*’. For this position we formulate auxiliary game problem 1 whose
conditions are as follows:

A. The equations of motion and the constraints on the control of the players are identical
with (1.6) and (1.2).

B. The time of the game, T, is not fixed (it follows from Sect.5 that T (% — v/p).

C. The payoff of Game 1 will be the value of p'), if the system trajectory has emerged at
boundary T;, or the value of v,* if it emerged at bcundary T,.

To solve Game 1 it is necessary to consider the auxiliary Games 2 and 3 formulated below.

7. Let {t,, E(t)) = DN, with Ec [P\P,)). i.e. y(t;) = 0. We introduce the auxiliary
Game 2 by the following conditions:

A. The equations of motion of the players are identical with (1.6).

B. Besides the constraints (1.2), the following constraint is imposed on the control of
the pursuers: for (,{t< 7T, the relation y{ =0 should hold along the system trajectory.

C. The instant T of the end of the game is not fixed.

D. The payoff of the game and the conditions of its termination are as Condition C in
Sect.6.

We note that in setting Game 2, the class of admissible strategies of the pursuers was
changed: condition B can be satisfied in the class of counterstrategies of players P; only.
In this case the result of the initial game will not change because, for a problem invclving
the dynamics which is described by Eg. {(1.6), a saddle point exists in the 'little' game.

We will show that Game 2 will end on the surface T,.

We assume the contrary, i.e. that the phase trajectory has crossed the boundary T {t,
t}el,. This, together with the condition y () = 0, means that at the instant t, player E
coincided with one of the pursuers: £ = P;. But the payoff of the game for such a position
is p¥ = pll =2/ (2p). Thus we arrive at a constradiction since the payoff of the game at the
initial position is p2 > v2/ (2.

Consider the following strategies of the palyers:

Us®: up = —up® = (02— (u21)?)'5 ugl = uy? = v, /(® — 1) (7.1)
(B — 1)2 — w2 )v. v}

Vo vy = —sign (z) min {l z| ( ps

Vp= (‘V2 — U]z)’ T

(Uy® is the countercontrol of the pursuers, and V,® denotes the positional control of the
evader) .
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Also, let U™ (f, v) be an arbitrary counterstrategy of the pursuers, V®(f) an arbitrary
positional control of the evader, and %* the value of the functional in Game 2 on the correspond-
ing strategies.

It can be shown that for U,® and V. ®, the inequality of the saddle point

.Yt (Uo(ﬂ, V('Z))<?g (UO(R), Vo(a))_<?. (U(Z)’ Vo(ﬂ)) (7.2)
holds.
1°, First we shall prove the left-hand inequality of (7.2). To do this, we substitute
strategy U,?) into Game 2, and obtain a problem of the optimal control of player E, of the
form
=y, 3= (W (8 — 1) = )N () (7.3
For E e|[P,P;] on the section ¢, £t T, the condition of ending the game (reaching T,
by the trajectory) takes the form

O=(@=TP4# ()= (T)Nh—p(§—T=0 (7.4)
The programmed maximin i¢ found from the formula

Yal = (P (0= TR () =2 (M) —p (8~ T)2/ 2 (7.5
Thus, the functional of the problem is y* = maxvmv.‘l (7).

By the definition of the domain DN, if the initial position is ({4 §(t)} & D¥N* and the
inequality z(4)>]=z(%)|>0 holds, the analogous inequality will hold at the instant t=T:
2(T)>|z(T)| > 0. It can be shown that for ¢ <:< 7T the identity z()=0 £ollows from the
equation =z () =0.

It follows from the maximum principle /1l/ that the optimal control of player F in Game 2 should
have the form

u’(o—t)-v’) }
¥

vx=—sign(=(7))lmin{lzl<,-(T)_,.( )

vy =k (v—pt)r

(1.6

Clearly, this value of the functional does not depend on the sign of the control v, since
the trajectories generated by these controls are symmetric with respect to the 1, axis. To
be specific, let us set v, >0, and analyse the expression for v from (7.6). We shall assume
that for small t, a minimum is attained at the second term, that is vy (t)= —sign(z(7))v. In the
coordinate system (w,, m,), the rectilinear sections of the players' trajectories correspond to
this control (Fig.4). Starting at a certain instant t¢t=1, up to the instant t=1T, a
minimum in (7.6) will be attained at the first term. Therefore player E makes use of the
control

T
A
VAN
/N \\\\
7 N
E(T) // & \w?\
- | .
Ay B(T,) 0 E(t,) E(tg BT Bty
Fig.4
()= — 2 () (02 (8 — t)F ~ W)/ (i3 (T) — 22 (T))"r (7.7
On substituting Eg. (7.7, into system (7.3) we find that for te|t, 7] the relations
s/ W=/ z(T)=2z2()/z(t) (7.8)

exist, i.e. =z (7, :z(N can be replaced by z (1), 2(1) in the control law.
it 1 1

The equality 2 (1) (02 (8 — 108 — W0/ (22 (1) — 2 (@) = v
holds at the instant t=1,, hence z2(t,)/(g(® —¢t,)=2z(,)/~ In a fixed coordinate system the
beginning of a curvilinear motion by the players will correspond to the instant t=1, (FPig.4) .

It follows from (7.7) and (7.8) that on the curvilinear trajectory segment the projections
of the velocities of the players P; and E on the n, axis are proportional to the phase coordi-
nates. For the velocity projections on the 1w, axis we have (8 — ) ut = (§ — 1) w2 =1, Hence,
considering (7.7) and (7.8), we have

—z () () =2 () ut (1) u (1)

This means that on the curvilinear parts of the trajectory the velocity vectors of players

P, and E are directed at the same pecint N lying on the n, axis of the fixed coordinate system.
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During the curvilinear motion the point N shifts along the 1, axis from the point 0 for t=1,
to the point A (the point of extremal aiming) for (=T,

The problem of optimal control (7.3)=—(7.5) is solved.

2°, The contreol (7.6) which solves problem (7.3)—(7.5) is a programmed control. However,
using {7.7) and (7.8) this problem can be rewritten in a form identical to V,%, and considered
as the positional control of player E.

Let us now prove the first inequality in (7.2). For this, we substitute V,® into Game 2,
thus obtaining a problem of optimal control for players P;,of the form

=yl -nt 2= (Y + e (7.9)
The equation relating the phase coordinates and controls is given by
=02 1) — (/)" =0 (7.10)

The condition for ending the process and the payoff are {(7.4) and (7.5) respectively (the
pursuers tend to minimize 3,2 (7).

In Egs.(7.9) and (7.10) the functions u(t, 2, 1) are components of the positional strategy
V,® of player E,mT =1,(0— 1 [ud+ upl] k=1, 2.

As was done in 19, a check is made that the programmed control of the pursuers WD) =
U® (V) satisfies the maximum principle for problem (7.9), (7.10}, (7.4}, (7.5).

8. Let {1, E(ty)} =DN® and E < [P,P,], that is y(t,) = 0. We shall present an algorithm
for obtaining the functional ¢* of the auxiliary Game 2. We shall assume, to be specific,
that z(t,)>»0. Also, let the inequality 2z (f,)/(p (& — &) > 2 (t,)/+ which implies that in the
optimal trajectory of Game 2 there isno straight line section, be satisfied at the instant
t==1%t, ({(Fig.4). We introduce the notation

1
Tt )= {2 (0 — 1 —vthdr, Bo=(2(to) — 22 (1))
1,
The eqgualities

W) =zt (1 —J (to, )/ A 2 (&) =2 () (1 — J (L, 1))/ Ao (8.1)

hold on the curvilinear section.
Consider the eguation
J{te, )/ Ay =1 (8.2}

If it has the root t=1,=[t,, 8], then at the instant ¢ =1, the eguality z{f,) =zx(f,) =
0 holds. This points to the fact that y* ==+2/(2u), and that the initial position is {fo. ¢
(t,)} = DN,®, i.e. p¥ =2/ (2u).

Suppose that Eg.{8.2) has no root. At the instant t==T Eg.{7.4) should be satisfied,
On substituting (8.1) intoc {(7.4), we cbtain the following non-linear equation for determining
the time T of Game 2:

VB — T+ (1 = J (tg, T)/ A Alls = p (8 — T)? (8.3)

We find the functional from the formula % = p (@ — 7)*/2.

If the relation z({;)/{(p (@ — £;)) < z(t} v holds at the instant t=1{,, it means that
the optimal trajectory of Game 2 has a straight-line section. Therefore we first seek the
minimum root = t* of the quadratic eqguation z({t)/(u (& — t)) = z (t) ' v, where

{
z(t)=:(t) —\w (0 —1)dr, z(t)=z(te) —v(t—10)

It can be shown that for {t, & (t,)} € DN,* this root (which correspcnds tc the instant
when the straight-line section ends} certainly exists. Further, we assume ¢, = t* and perform
the operations given at the beginning of this section,

9. Now let {t, E(t)} = DN with E & {P,P,]. Let us assume that y(t,) >> 0, and formulate
auxiliary Game 3 for the above position.

A. The equations of motion and the constraints on the control of players are identical
with (1.6),

B. The time of game 7, is not fixed,

C. Pursuers P; tend to lead out the trajectory of the system on the surface ¥ = y(I) =0,
at the same time minimizing the payoff ¥*(Ty). The problem of the evader is the opposite.

Below we shall build the positional strategies of the players which yield a saddle point
for Problem 3.

By the relations y* =79* (2,21}, ¥ =¥ (y) and the maximum principle /11/, the egquations

d =
dt t=T,

d
0, L-y*)_ =0 (9.1)

3-7’1
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should hold on the terminal surface ¥ (y) = 0. These equations express the fact that the
trajectory approaches the terminal surface along a tangential line. Suppose that the point
N (0,n) belongs to the m, axis. We shall consider the coordinate n as a parameter and use
the notation

/s

UN(S) — ((__ 1)i- 24 (zﬁ + nl) M (Z’ + n;)—ill)
Va® == (— v (2* + (n — y)z)-‘/', (n—y)v(z*+(n— )™

(Ux®  and Va"™ are the extremal controls of players P;and E, oriented at the point N).

We define the value of the parameter n = n* such that in the motion generated by the
controls Ufs and V at the instant the game terminates t = T, the conditions of tangency
(9.1) are satisfied, that is ¥ =y =0. Since the initial position {t,, & (f,)} belongs to
the set DN,*, the desired value of the parameter n* and the corresponding point N* (0, n*)
certainly exist and are unique (because E & [P\P,] when t=1)). Using the maximum principle
one can check that U and Vi yield a saddle point of the auxiliary Game 3:

VU, VO (U, VR <y (U, VR 9.2)
(y** 1is the value of the payoff y* on the corresponding strategies).

10. Given the initial position {f; % ()} = DN*, let us describe an algorithm for
obtaining y**. We put
sin a; = (n — y (§)) ' ((n — y (1)) + 2% (t,))" (10.1
sin By = n/ (n* = 2% (o))"

and consider the eguation
Ty

sinfy ( u(@—1)dr=v(T—ty) siney — y(t0) (10.2)
t,

On substituting (10.1) into (10.2) we obtain a gquadratic equation with parameter n
relative to the time 7T; when auxiliary Game 3 ends. Then n = n* is the desired value of the
parameter if the discriminant of Eq.(10.2) is zerc for n = n*. The instant t = I, when Game
3 ends .corresponds to the value cf n*, and the game's final position {T,. z (7)), 0, z (T} is an
initial position for the auxiliary Game 2. Applying the procedure described in Sect.8, we cbtain
the value of the programmed maximin 7y,”' at the instant when the trajectory appears on the
boundary TI,, t=T. We assume that +9** = y,2 (7).

11. For t=1,, using the positional strategies U¥: and Vi we can divide the set

DN?  into domains DN,® and DN,?. set DN,* consists of a position ({t;. & (%)} for which
the algorithm from Sect.lO yields y** >+% (2u). On set DN, the equatiocn

T = v2/(2) (11.1)
helds.

For the points of set DN, , the strategies which furrish (11.1) are unique for both
players. This fcliows from inegquality (9.2). At the boundary I; of domains DN;* and DN
the strategies of the pursuers, which ensure for them the existence of (1l.l), are unique,
but the evader's strategy is nct unigque. At the inner points of domain DN,? the strategies
of both sides are nct unigue. This phencmenon takes place in domain DY as well (see /1/).

12, we set

[ve {tor E(to)} = DR
L’l'**’ (tﬂ' E(to)} = DN

[ 2 Qe
Y =

The function y*** is continuous in domain D? since the functions x2land  y** are
continuous in the corresponding domains of definition, and their values are identical on the

boundary T,.

Assertion. The function y*** is (u, v)-stable in the domain D?.

The proof follows from the existence of saddle points in auxiliary Games 2 and 3.

Corollary 1. The optimal solution of auxiliary Game 1 consists of a series of optimal
solutions of Games 2 and 3. The strategies which furnish a saddle point for Game 1 have the
form

U y)=0 o [VRe (@) 0

s = o (12.1)
v y=0"° WV yw=0

U (1, __



421

Note that the strategy V,® in (12.1) is positional, but strategies U, are not pos-
jtional sinceU,® are the countercontrols.

The optimal trajectory of Game 1 consists of two parts. The first is the optimal
trajectory of Game 3 in the time interval t, Lt< I, It can be called a trajectory of extremal
guidance to point N*. The second part is the optimal trajectory of Game 2 over the time
interval T;<{t< T. We shall refer to this as the trajectory of proportional pursuit, since
along it the relation z(t)/z (t) = const holds.

Corollary 2. The introduction of constraint (7.14) on the control of pursuers in Game 2
does not reduce the possibilities of players P; in Game 1.

Thus, if {t,, & (£,)} < DN,?, the optimal trajectory of Game 1 will take place for some time
on the surface y(z) = 0, during which it emerges on it (the instant t = Ty), and goes down
from it (t = T), aloeng the tangent line (' =0 for T, I T7).

13. cConsider the function

a et {to E(to)y = D1
Tl e E)) = D2

It is continuous, like the function y*** , over the whole space. It was shown earlier
that p!’ and y*** are (u.Uv)-stable in domains D! and D*» respectively. Therefore, the
function p?' will be (u.r)-stable over the whole space, i.e. it will be the payoff of game
(1.6), (1.2), (L.7).

14, p typical trajectcry of an ideal game from the initial position {to E (t,)} = DN,®
is showr, in Fig.5. 1t is a union cf the optimal trajectcry of Game 1 for t, <t T and the
experimental programmed motion when T <t ¥,

0 Pty

Fig.t Fig.e

The set DN, can be divided intc subsets DN, and DNV,*. The subset DN, consists

of those positions {t,. £ (#)} for which the relations

i v
(G (to- )} 92—},.5=:{G=(to- 9)}
are standerd.
We note that for such positions a cne-tc-one game between E and the closer pursuer, cccurs
that is p¥ = p!l = v (2p).
We determine the set DN,™ as the difference cf the sets DNy = DN, \ DN,». Fcr the

initial positions {t,. & ()} = DN, the pursuers acting together ensure for themselves the
result p? =+?/(2p) which is better than in the cne-to-one game between E and one of the pursuers.
Let us look intc one of these positicns., We assume that players P; and E apply the strategies
UM and VY. Then the corresponding trazjectory will be such that at a certain instant
t=1t,e[T;, T] the points P, and E£ will coincide on the W, axis (i.e. z(t,) =z (t,)=0).
Obviously, in such a mection Egs.(1.6) hold tc the instant t =1, , since when t> T,, we have
2 (t) / z (1) = const . )

Note. 1°. On the basis of the paycff function constructed, given the known algorithms
/5/, it is possible to formulate the physically realizable strategies which furnish the players
with a result as close as desired tc the payoff of a game.

2°, By virtue of the symmetries of the optimal controls obtained for players P, and P,
the one-to-one problem with the phase constraints of the 'semiplane’ type has an analogous
solution (Fig.6).



422

REFERENCES

1. PASHKOV A.G., On one game of pursuit, PMM, 34, 5, 1870,

2. KRASOVSKII N.N. and SUBBOTIN A.I., Position differential games (Pozitsionnye differentsial’nye
igry}, Moscow, Nauka, 1974,

3. SUBBOTIN A.I. and CHENTSOV A.G., Approximation of the assurance in contrcl prcoblems
(Optimizatsia garantii v zadachakh upravleniya), Moscow, Nauka, 1981,

4. KRASOVSKII N.N,, Game problems of the encounter of motions (Igrovye zadachi o vstreche
dvizhenii), Moscow, Nauka, 1970.

5. KR?ggZSKII N.N., Differential games. Approximation and formal models, Matem. sb., 107, 4,

€. HAGEDORN P, and BREAKWELL J.V.,Adifferential game with two Pursuers and one Evader, J.
Optimization Theory and Appl., 18, 1, 1976.

7. GRIGORNENKO N.L., The pursuit of one evading object by several objects of different type,
Dokl, AN SSSR, 268, 3, 1983.

8. CHIKRII A.A., Group pursuit under bounded evader coordinates, PMM, 46, 6, 1982,

9. PASHROV A.G., On one estimate in a differential pursuit game. PMM, 36, No.6, 1972,

10. PASBKOV A.G. and TEREKHOV S.D., On a game of the optimal pursuit of an obiject by two other
objects. PMM 47, 6, 1983,

11. PONTRYAGIN L.S., BOLTYANSKII V.G., GAMKRELIDZE R.V. and MISHCHENKO E,.F., Mathematical
theory of optimal processes, Moscow, Nauka, 1976,

12. BRAYSON A, and KHO YU. SHI., Applied theory of optimal control /Russian translation/,
Moscow, Mir, 1972.

Translated by W.C.

PMM U.S.S.R.,Vol.49,Noc.4,pp. 422-428,1985 0021-8928/85 §$10,00+0.00
Printed in Great Britain Pergamon Journals Ltd.

THE TRANSFORMATION OF LINEAR NON-STATIONARY OBSERVABLE AND CONTROLLABLE
SYSTEMS INTO STATIONARY SYSTEMS

N.B. VAVILOVA, V.I. KALENOVA and V.M. MOROZOV

The methodclogical problems of the reducibility of some classes of linear
non-stationary observable and contrcllable systems to stationary systems
is considered. The constructive use of this property to analyse the
controllability and observability of non-stationary systems, and also to
solve applied control and estimation problems, is proposed.

For practical applications the separation of the classes of non-
stationary systems, which can be investigated using simple and effective
methods similar tc those for analysing stationary systems, is of interest.
Linear non-stationary systems for which the fundamental matrix of the
solutions can be algorithmically simply constructed using the matrix of the
coefficients, pertain to these calsses; in particular systems which can be
reduced to stationary systems /1-5/using the well-known non-degenerate
transformation, and also systems which are Lyapunov-reducible /6, 7/.
Although for non-stationary systems the sufficient conditions for control~
lability and observability which do not require a knowledge of the funda-
mental matrix of the initial syster /8~10/ are known, the search for
constructive transformations which reduce the initial system to a form
suitable for analysing and synthesizing simple control and estimation
algorithms is important and useful.

1. cConsider the linear non-stationary system
r=A{®z+B({u c=C()z {1

where z is an n-dimensional state vector of the system, u is an r-dimensional vector of the
controlling action, ¢ is a k-dimensional vector of measurements and At B({), C(t) are
matrices of corresponding dimensions, the elements of which are continuously differentiable
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